

12-18 GHz Ku-Band 3-Stage Driver Amplifier

TGA2507-EPU

Preliminary Measured Data

TriQuint C

Bias Conditions: Vd = 6 V, Id = 80 mA 32 0 Gain -5 28 24 -10 Loss (dB) IRL -15 20 Gain (dB) 16 -20 turn -25 12 -30 ដ៏ ORL 8 -35 4 0 -40 8 10 12 14 16 18 20 22 Frequency (GHz) 24 22 P1dB (dBm) 20 18 16 11 12 13 14 15 16 17 18 Frequency (GHz)

Key Features

- 12-18 GHz Bandwidth
- 28 dB Nominal Gain
- 20 dBm P1dB
- Bias: 5,6,7 V, 80 ± 10% mA Self Bias
- 0.5 um 3MI mmW pHEMT Technology
- Chip Dimensions: 1.80 x 0.83 x 0.1 mm • (0.071 x 0.031 x 0.004) in

Primary Applications

- Point to Point Radio
- Military Ku-Band
- Ku-Band Space
- VSAT

Advance Product Information December 5, 2004

TGA2507-EPU

TABLE I MAXIMUM RATINGS <u>1</u>/

SYMBOL	PARAMETER	VALUE	NOTES
V ⁺	Positive Supply Voltage	8 V	<u>2/</u>
I ⁺	Positive Supply Current	114 mA	<u>2</u> /
P _{IN}	Input Continuous Wave Power	20 dBm	
P _D	Power Dissipation	0.91 W	<u>2/ 3</u> /
Т _{сн}	Operating Channel Temperature	150 ⁰ C	<u>4/ 5</u> /
Τ _M	Mounting Temperature (30 Seconds)	320 ⁰ C	
T _{STG}	Storage Temperature	-65 to 150 ⁰ C	

- 1/ These ratings represent the maximum operable values for this device
- <u>2</u>/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.
- 3/ When operated at this power dissipation with a base plate temperature of 70° C, the median life is 1.8 E+6 hrs.
- 4/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.
- 5/ These ratings apply to each individual FET.

TABLE IIDC PROBE TESTS $(T_A = 25 \ ^{\circ}C \text{ Nominal})$

SYMBOL	PARAMETER	MINIMUM	MAXIMUM	VALUE
V _{BVGS3}	Breakdown Voltage gate-source	-30	-11	V
V _{BVGD3}	Breakdown Voltage gate-drain	-30	-11	V
V _{P2}	Pinch-off Voltage	-1.5	-0.3	V
V _{P3}	Pinch-off Voltage	-1.5	-0.3	V

Advance Product Information December 5, 2004

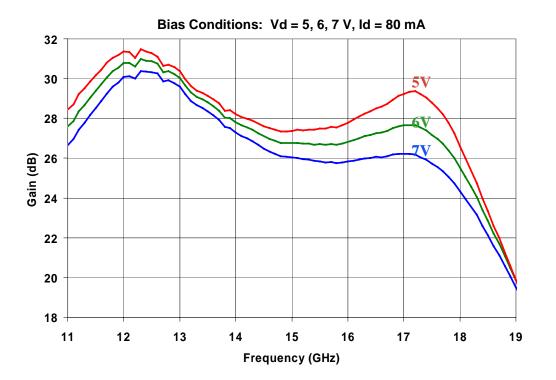
TGA2507-EPU

TABLE III ELECTRICAL CHARACTERISTICS

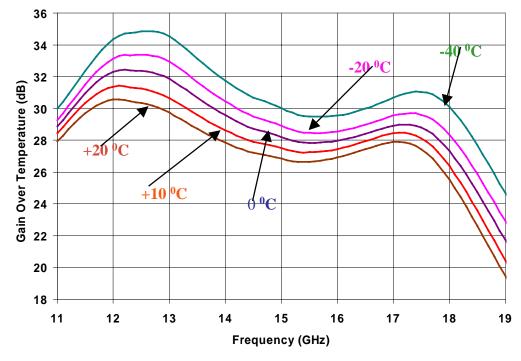
 $(Ta = 25 \ ^{\circ}C, Nominal)$

PARAMETER	TYPICAL	UNITS
Drain Operating	6	V
Quiescent Current	$80 \pm 10\%$ Self Bias	mA
Small Signal Gain	28	dB
Input Return Loss	15	dB
Output Return Loss	20	dB
Output Power @ 1 dB Compression Gain	20	dBm

TABLE IV THERMAL INFORMATION

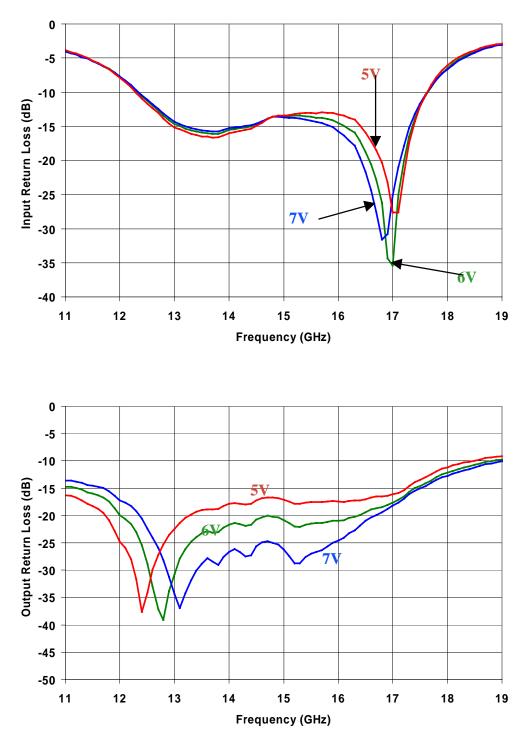

Parameter	Test Conditions	Т _{сн} (°С)	R _{θJC} (°C/W)	T _M (HRS)
R _{θJC} Thermal Resistance (channel to backside of carrier)	Vd = 6 V Id = 80 mA Pdiss = 0.48 W	108	80	5.2 E+7

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.


Advance Product Information December 5, 2004

TGA2507-EPU

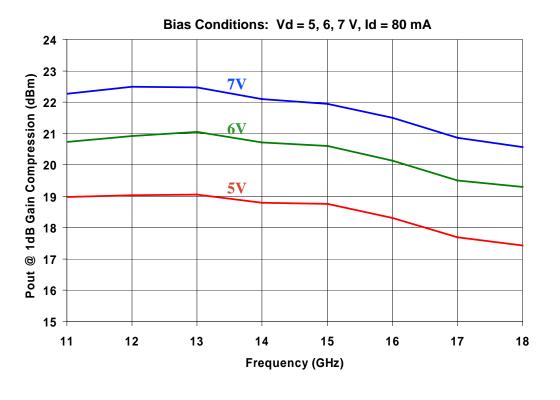
Preliminary Measured Data

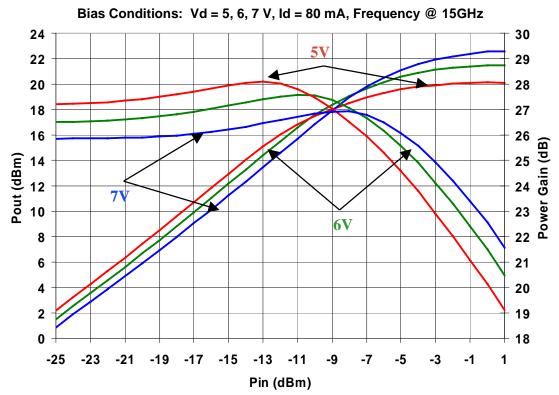


Advance Product Information December 5, 2004 TGA2507-EPU

Preliminary Measured Data

Bias Conditions: Vd =5, 6, 7 V, Id = 80 mA

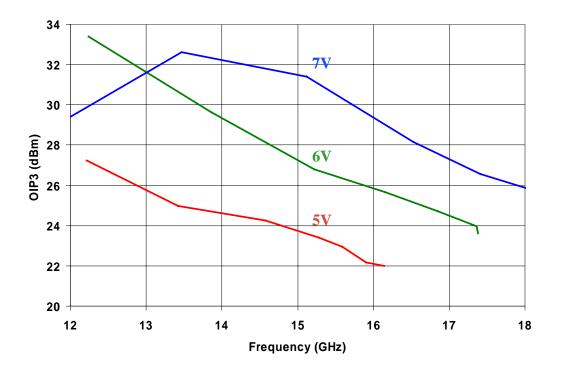



Advance Product Information

December 5, 2004

TGA2507-EPU

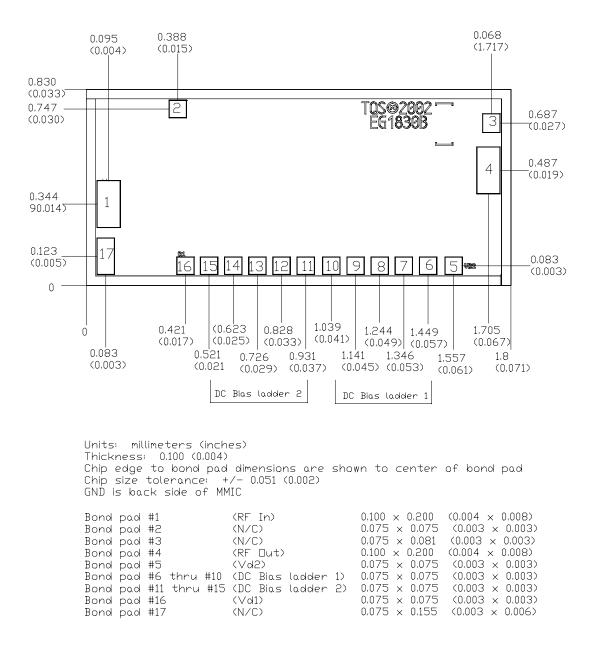
Preliminary Measured Data



TGA2507-EPU

Preliminary Measured Data

Bias Conditions: Vd = 5, 6, 7 V, Id = 80 mA



December 5, 2004

TGA2507-EPU

Mechanical Drawing

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

December 5, 2004

TGA2507-EPU

Chip Assembly Diagram

This configuration is for a self-bias logic pad current search with connections for bin #1. See Table IV for alternate bin # to get the current of typical $80 \pm 10\%$ mA.

TABLE V PAD CONNECTIONS

BIN No.	DC BIAS LADDER 1	DC BIAS LADDER 2
1	Pad 6 to Pad 7	Pad 11 to Pad 12
2	Pad 6 to Pad 8	Pad 11 to Pad 13
3	Pad 6 to Pad 9	Pad 11 to Pad 14
4	Pad 6 to Pad 10	Pad 11 to Pad 15

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice

TriQuint Semiconductor Texas: Phone (972)994-8465 Fax (972)994-8504 Email: Info-mmw@tqs.com Web: www.triquint.com

Advance Product Information December 5, 2004 TGA2507-EPU

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300₁ C (30 seconds max).
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Maximum stage temperature is 200 C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.